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Orthonormal ridgelets provide an orthonormal basis for L2(R2) built from spe-
cial angularly-integrated ridge functions. In this paper we explore the relationship
between orthonormal ridgelets and true ridge functions r(x1 cos %+x2 sin %). We
derive a formula for the ridgelet coefficients of a ridge function in terms of the 1-D
wavelet coefficients of the ridge profile r(t). The formula shows that the ridgelet
coefficients of a ridge function are heavily concentrated in ridge parameter space
near the underlying scale, direction, and location of the ridge function. It also
shows that the rearranged weighted ridgelet coefficients of a ridge function decay at
essentially the same rate as the rearranged weighted 1-D wavelet coefficients of the
1-D ridge profile r(t). In short, the full ridgelet expansion of a ridge function is in
a certain sense equally as sparse as the 1-D wavelet expansion of the ridge profile.

It follows that partial ridgelet expansions can give good approximations to
objects which are countable superpositions of well-behaved ridge functions. We
study the nonlinear approximation operator which ``kills'' coefficients below certain
thresholds (depending on angular- and ridge-scale); we show that for approximat-
ing objects which are countable superpositions of ridge functions with 1-D ridge
profiles in the Besov space B4 1�p

p, p(R), 0< p<1, the thresholded ridgelet approxima-
tion achieves optimal rates of N-term approximation. This implies that appropriate
thresholding in the ridgelet basis is equally as good, for certain purposes, as an
ideally-adapted N-term nonlinear ridge approximation, based on perfect choice of
N-directions. � 2001 Academic Press

Key Words: wavelets; ridge function; ridgelet; radon transform; best N-term
approximation; thresholding of wavelet coefficients.

1. INTRODUCTION

In [9], we introduced orthonormal ridgelets, defined as follows. Let
(�j, k(t): j # Z, k # Z) be an orthonormal basis of Meyer wavelets for L2(R)
[14], [15, Engl. Transl. p. 75], [6, pp. 66�70], and let (w0

i0l(%), l=0, ...,
2i0&1; w1

i, l(%), i�i0 , l=0, ..., 2i&1) be an orthonormal basis for K2[0, 2?)
made of periodized Lemarie� scaling functions w0

i0 , l at level i0 and
periodized Meyer wavelets w1

il at levels i�i0 [15, Engl. Transl. p. 113].
(We suppose a particular normalization of these functions; see Section 2.1
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below). Let �� j, k(|) denote the Fourier transform of �j, k(t), and define
ridgelets \*(x), *=( j, k; i, l, =) as functions of x # R2 using the frequency-
domain definition

\̂*(!)=|!| &1�2 (�� j, k( |!| ) w=
i, l(%)+�� j, k(&|!| ) w =

i, l(%+?))�2. (1.1)

Here the indices run as follows: j, k # Z, l=0, ..., 2i&1&1, i�i0 ; and, if
i>i0 , i� j. Also, if i>i0 and i> j, then necessarily ==1. Let 4 denote the
set of all such indices *. (To avoid confusion, note that in [9] two
orthonormal systems were discussed; the one we study here was defined
and used throughout the main body of [9]). In that article, it was shown
that this collection of functions makes an orthonormal set for L2(R2).

Define now �+
j, k(t)= 1

2? ��
&� |||1�2 �� j, k(|) ei|t d|; this is a fractionally-

differentiated Meyer wavelet. The cited article also showed that for x=
(x1 , x2) # R2,

\*(x)=
1

4? |
2?

0
�+

j, k(x1 cos %+x2 sin %) w=
i, l(%) d%. (1.2)

Here, each �+
j, k(x1 cos %+x2 sin %) is a ridge function of x # R2, i.e., a func-

tion of the form r(x1 cos %+x2 sin %). Therefore \* is obtained by ``averag-
ing'' ridge functions with ridge angles % localized near %i, l=2?l�2i; this
justifies the ``ridgelet'' appellation.

1.1. Ridge Functions

The ridge function terminology was introduced in the 1970's by Logan
and Shepp [13] in connection with the mathematics of computed
tomography. In recent years, ridge functions have appeared often in the
literature of approximation theory and statistics as part of methodological
topics such as neural networks [1] and projection pursuit regression [11].
A celebrated result of Barron [1], building on work of Lee Jones [12],
established the ability of an appropriately-chosen superposition of ridge
functions f� N(x)=�N

n=1 an_(u$nx&bn) to converge at good rates to an
underlying function f obeying a certain smoothness condition, even in high
dimensions [1]. A variety of interesting literature has ensued.

Cande� s [3] has pointed out a key drawback of much of the work on
neural nets: the lack of a constructive, stable character. Many results are of
the form ``there exists a sequence of approximations''; they don't exhibit a
sequence of approximations concretely. Other results, even if constructive,
fail to exhibit stability. For example the directions un , locations bn and
coefficients an appearing in an N-term approximation are not stable func-
tionals of the underlying approximant f: small changes in f can lead to large
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changes in these functionals, which are therefore not interpretable as
having any reliable meaning.

In an instructive analogy, the situation in much of the literature on ridge
function approximation could be compared to a (non-existent) situation
where we knew that there exist approximations to functions by superposi-
tions of plane waves exp[- &1 |$x], but where Fourier analysis had not
been invented, so we didn't know how to construct stable approximations,
or, more properly, didn't know that such stable approximations were
possible in principle. Equally, we could imagine a situation where we knew
that there exist approximation by superpositions of wavelets �a, b(x)=
a1�2�(ax&b), but where orthonormal wavelet analysis had not been
invented, and so we didn't know how to construct stable approximations.

1.2. Ridgelets
Cande� s [3] and Murata [16] independently obtained results suggesting

that, just as the Fourier transform allows to construct stable approxima-
tions by plane waves, and the wavelet transform allows to construct stable
approximations by wavelets, there is a transform which allows to give
stable approximations by special ridge functions. They developed the
continuous ridgelet transform, defined using ridge-wavelets �a, b, u(x)=
�(au$x&b) a1�2 where a>0, b # R, and # Sd&1, and taking values
Rf (a, b, u)=( f, �a, b, u) (we are following notation of [3]). This con-
tinuous transform has a reconstruction formula f (x)=� Rf (a, b, %)
�a, b, % (x) d+(a, b, %), representing f as a continuous superposition of ridge-
wavelets (here d+ is an appropriate reference measure). Cande� s showed
that the coefficients of this continuous transform were stable��obeying a
Parseval relation. He also showed that discrete decompositions were
possible, so that for L2 spaces of compactly supported functions one could
develop a frame of ridgelets��a discrete family (�an , bn , un(x)) serving the role
of an approximating system. The outcome of this pioneering research was,
more or less, to show that ridgelet analysis could be used for nonlinear
approximation in a way paralleling Fourier analysis and wavelet analysis;
one could construct good approximations from superpositions of N ridge
functions by a very simple algorithm: simply form a partial reconstruction
taking the N most significant coefficients in the ridgelet frame. However, in
Cande� s' approach, certain interpretational details remained to be clarified.
Because the ridgelet frames were not tight, the dual frame elements form
part of the complete picture; but as these were known only implicitly, cer-
tain properties of the algorithm remain only partially accessible to analysis.

1.3. Orthonormal Ridgelets
The ``classic ridgelets'' of Cande� s are not in L2(R2), being constant on

lines t=x1 cos %+x2 sin % in the plane. This fact seems responsible for
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certain technical difficulties in the deployment and interpretation of discrete
systems based on Cande� s notion of ridgelet. In [9] the author had the sub-
versive idea to broaden the concept of ridgelet somewhat, allowing ``wide-
sense'' ridgelets to be functions obeying certain localization properties in a
radial frequency _ angular frequency domain. Under this broader concep-
tion, ridgelets no longer are of the form �a, b, u(x), so the elegant simplicity
of formulation is lost. However, in exchange, it becomes possible to have
an orthonormal set of ``wide-sense'' ridgelets. These ``orthonormal ridgelets''
are believed to be appropriate L2-substitutes for ridge functions, and to
fulfill the goal of a constructive and stable system which although not based
on true ridge functions are believed to play operationally the same role as
ridge functions.

1.4. A Fruitful Analogy
A certain analogy may help the reader understand the situation. Suppose

we wanted to approximate a function f (t) of a single real variable by a
finite superposition f� n(t)=�N

n=1 cn ,an , bn(t) of Gaussian bumps ,a, b(t)=
,(at&b). How could we go about this? As Pencho Petrushev has pointed
out to the author, there is no known method for constructively obtaining
a stable and effective N-term approximation by such superpositions of
Gaussians.

On the other hand, if we switch attention to orthonormal wavelets,
which are not Gaussians, we obtain a discrete scale-location family where
good N-term approximations are easy to construct; one simply uses the N
biggest terms in the wavelet expansion. Moreover, one ultimately gains in
the practical domain as well, because fast wavelet transform algorithms
become available. The N-term expansion is no longer an expansion in
Gaussians; it has been replaced by what are in a sense quasi-Gaussians, but
for which the theoretical and practical questions are much better posed and
are solvable.

In facing Petrushev's question, we therefore make decisive progress by
abandoning insistence on the original specification of the synthesizing
elements, and passing to a new system of ``similar'' elements, where the
answers are clear and clean.

This is our philosophy in the present article; we explore the idea that one
can understand ridge function approximation not by studying approxima-
tion through narrow-sense ridgelets (as in Cande� s' papers [3, 4]) but by
abandoning these, and studying approximation through a wide-sense
ridgelet system��the orthonormal ridgelets.

1.5. A Special Relationship
There is in fact a close connection between orthonormal ridgelets and

certain special ridge functions.
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Let #=( j0 , k0 , %0) be given, and define the special ridge function
r#(x)=�+

j0 , k0
(x1 cos %0+x2 sin %0). Define, for *=( j, k; i, l, =), the array of

coefficients

a#
*=$j0 j$k0k } w=

i, l(%0)+$j0 j$k0 , 1&k } w=
i, l(%0+?), (1.3)

where the $'s denote Kronecker symbols. We will show below that the spe-
cial ridge function r# has a representation by ridgelets \* using precisely the
coefficients a#

* :

r#=:
*

a#
*\* . (1.4)

The special form of the coefficient array (a#
* : * # 4) is remarkable: it is very

sparse. In the j and k indices all the action occurs at precisely j= j0 and
k=k0 or k=1&k0 , while in the l index, all the action occurs ``near'' the
index l0 with %i, l closest to %0 , or at its counterpart closest to %0+?. In a
certain sense, the pure ridge function r# is a superposition of a small
number of ridgelets.

An apparent exception to our sparsity assertion occurs in the index i,
where the coefficients a#

* are increasing exponentially in i (as w =
i, l0

(%0)r

2i�2). Closer inspection reveals that effective support is sparse here as well.
The key is that the angular resolution index i associated with the ridgelet
parameter *=( j, k; i, l, =) measures in effect the distance of the support
of \* from the origin. Hence, if we restrict attention to a disk D=
[(x1 , x2): x2

1+x2
2<d 2] then, in a certain sense most of the action in \* will

be occurring outside the disk for d fixed and i large. Consequently, from
the point of view of the contribution of the product a#

* } \* within the disk
D, most of the action will be concentrated at a small range in the i index
as well��near i= j0 when j0 is large.

1.6. Ridgelet Coefficients of a Ridge Function

The connection indicated by (1.3)�(1.4) leads to a number of instructive
results about the connection between orthonormal ridgelets and ridge func-
tions. Starting now, ``ridgelet'' will always mean one of the orthonormal
ridgelets as defined in (1.1). Our initial result will be a formula for the
ridgelet coefficients of a ridge function with sufficiently-regular profile.

The notion of regularity of a profile we use in this paper is based on
homogeneous Besov spaces. We say that a distribution r belongs to B4 s

p, p(R)
if it can be represented as a wavelet series

r=:
j, k

: j, k �j, k , (1.5)
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where (�j, k) is a family of Meyer orthonormal wavelets, and where the
coefficients (:j, k) obey

\:
j, k

|:j, k | p 2 j(s+1�2&1�p) p+
1�p

<�. (1.6)

We will only be interested in the cases where p�1 and s�1�p. It is easy
to see that in such cases, (1.6) implies that (1.5) is absolutely summable to
a uniformly continuous function.

v Remark for nonspecialists. The most well-known example of this
type of space is the Bump Algebra (Meyer, 1990). This is the case s= p=1
of the above family. The Bump Algebra can also be described as follows.
It is the class of all functions r representable as a superposition of Gaussian
bumps ga, b(t)= g(a(t&b)), with g(t)=e&t2

, where r=�i ci gai , bi (t) and
�i |ci |<�. This is a superposition of bumps of all possible widths and
locations, where the total sum of heights of all the bumps is finite. It will
turn out for some of our results that this space plays the role of a critical
case, the least-regular space where our approach works.

v Remark for specialists. This notion of homogeneous Besov space
is admittedly nonstandard, since in general such spaces consist of equiv-
alence classes of distributions rather than classes of proper functions. In
effect, our approach singles out one specific member of an equivalence
class; in fact the one vanishing at \�. To remind ourselves of this fact, we
will typically say that an r belongs to B4 s

p, p and vanishes at \�.

Below we will write &r&B4 s
p, p(R) for the norm of the profile; we mean by this

precisely the left side of (1.6).
Define the fractionally-integrated Meyer wavelet

�&
j, k(t)=

1
2? |

�

&�
||| &1�2 �� j, k(|) ei|t d|.

Theorem 1.1. Let r(t) be a function of a single variable, vanishing at
t=\� and belonging to the Bump Algebra (Besov space B4 1

1, 1). Let
r% (x)=r(x1 cos %+x2 sin %) denote the corresponding ridge function with
ridge profile r and direction parameter %. Then

(r% , \*)=((r, �&
j, k) w=

i, l(%)+(r, �&
j, 1&k) w=

i, l(%+?))�2. (1.7)

Here the scalar product on the left of (1.7),

(r% , \*) #|
R2

r% (x) \*(x) dx,
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may be interpreted as a pairing between L�(R2) and L1(R2), while the
scalar product on the right, (r, �&

j, k)=�R r(t) �&
j, k(t) dt, is a pairing

between L�(R) and L1(R). The formula (1.7) shows that the ridgelet
coefficients of a ridge function separate into two factors: (1-d wavelet
coefficients of the ridge profile)_(wavelet point evaluations at the given
ridge direction).

1.7. Linear Approximation by Ridgelets

We now consider linear approximation of ridge functions by index-
limited ridgelet expansions. For a bounded function f (x), let Ai1f =
�i, j�i1 ( f, \*) \* be the partial sum approximation to f by ridgelets with
both i and j index-limited so that only scales larger than 2&i1 are used.

Theorem 1.2. If the ridge profile r # B4 1
1, 1(R) and r vanishes at \�, then

the approximation Ai1r% to the ridge function r% is well-defined and converges
to r in L�(D)-norm as i1 � �. If, in addition, the profile r # B4 s

1, 1 , s>1, then

&r%&Ai1r%&L�(D)�C2&i1(s&1) &r&B4 s
1, 1(R) , i1=i0 , i0+1, ... . (1.8)

Here L�(D) means supremum norm over a fixed disk, D=[x2
1+x2

2<d 2].

This shows that linear approximation by ridgelets converges rapidly to
nice ridge functions. We note that the rate is comparable to what one
would expect for a general method of approximation to a general function
of the same smoothness.

1.8. Nonlinear Approximation by Ridgelets

We now consider nonlinear approximation to ridge functions by N-term
ridgelet approximations. For this result, let '$( y, s)= y1[ y } s>$] be a
thresholding function with a ``scaling'' argument s, allowing for adjustment
of the threshold. For a bounded function f, with a finite value for

N� ($)=:
4

1[ |( f, \*) | } &\*&L�(D)>$] , (1.9)

set

f� $=:
4

'$(( f, \*) , &\*&L�(D)) \* . (1.10)

Theorem 1.3. Let the ridge profile r(t) belong to Besov space B4 s
p, p(R),

with s=1�p and 0< p<1, and vanish at \�. Let r% (x) denote the corre-
sponding ridge function of x # R2. Define a sequence of approximants (r� N) by
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letting r� N� ($) be the N� ($)-term ridgelet approximation obtained from (1.10),
with f =r% . Then

&r%&r� N&L�(D)�C } &r&B4 s
pp(R) } N&(s&1), N=1, 2, ... . (1.11)

This shows that ridgelet thresholding is a natural procedure to construct
finite sums of ridgelets converging rapidly to smooth ridge functions.

The apparently nonstandard spaces B4 s
p, p with p<1 are in fact very

natural for this result; it is well-understood that these are the appropriate
spaces for understanding the properties of nonlinear approximation using
the L� norm in R [7, 17]. As described below, nice enough ridge profiles
r have convergent expansions r=� cj, k �+

j, k . Suppose we constructed
N-term 1-d wavelet approximations to the ridge profile function r which
were of the form rN=�N

n=1 cjn , kn �+
jn , kn

by the device of picking the N-most
``important'' terms according to the value of the product |cj, k | }
&�+

j, k &L�[&d, d] . Then the hypothesis r # Bs
p, p[&d, d] alone would allow at

best a conclusion of the form

&r&rN&L�[&d, d]�Const } N&(s&1), N=1, 2, ... . (1.12)

Moreover, no other stable scheme of N-term approximation (e.g. one based
on something other than the wavelets (�+

j, k), for example rational
approximation, free knot spline approximation, etc.) can do essentially
better than this��this is the meaning of the statement that such methods all
have Bs

p, p[&d, d] for their approximation spaces [7].
In this light, Theorem 1.3 is rather interesting. It says that ridgelet

thresholding��which does not ``know'' the direction of the ridge��does
essentially as well as a kind of ideally direction-adapted ridge approxima-
tion which ``knows % '', Specifically, consider an N-term ridge approxima-
tion making use of % as follows. With rN an N-term approximation to the
ridge profile, just approximate r% using the ridge function rN, % in exactly
the right direction: rN, % (x)=rN(x1 cos %+x2 sin %).

The properties of this ideally-adapted approximation are easily derived.
When approximating ridge functions by ridge functions, the L�-error of
2-dimensional approximation is isometric to the L�-error of 1-dimensional
approximation:

&r&rN&L�[&d, d]=&r%&rN, %&L�(D) . (1.13)

Combining (1.12) with (1.13), we see that the ideally-adapted N-term
scheme gives

&r%&rn, %&L�(D)�Const } N&(s&1), N=1, 2, ..., (1.14)
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and this is the best one can hope for in general. Indeed, recalling the dis-
cussion after (1.12), no other way of generating N-term approximate ridge
profiles rN and then using these to build ridge functions rN, % is going to
admit of substantially better estimates, uniformly over the class of all
profiles r obeying &r&B4 1�p

p, p(R)�R.
Comparing (1.14) with (1.11) shows that, in a certain sense, an ideal

approximation to a ridge function r% using N pure ridge functions in the
exact ridge direction does not do better than our N-term ridgelet
approximation, which has no ``knowledge'' of % and does not depend in any
way on an assumption that the approximant is a ridge function.

1.9. Superpositions of Ridge Functions

Our results have immediate implications for approximating more general
functions f.

Consider the linear approximation result, Theorem 1.2. Convexity of the
L�(R2) norm, combined with linearity of Ai1, immediately yields the
following

Corollary 1.4. Suppose that f (x1 , x2) is a superposition of ridge func-
tions with profiles ri (t), i=1, 2, ... obeying the constraint that, for a certain
s>1,

R#:
i

&ri&B4 s
1, 1(R)<�; (1.15)

that is, for directions %i , i=1, 2, ..., we have

f = :
�

i=1

ri, %i , (1.16)

with the indicated sum necessarily norm-convergent for the L�(R2) norm,
owing to assumption (1.15). Then the linear approximation error obeys

& f&Ai1f &L�(D)�C } 2&i1(s&1) } R, i1=1, 2, 3, ... .

Let RS(s, 1, 1, R) denote the collection of all functions f arising as
superpositions of ridge functions obeying (1.15)�(1.16). The class RS(s, 1,
1, R) contains, as a subclass, those pure ridge functions r(x1 cos(%)+
x2 sin(%)) with ridge profiles obeying &r&B4 s

1, 1(R)�R. On this subclass,
Theorem 1.2 shows that the linear ridgelet approximation error is bounded
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by C2 } 2&i1(s&1) } R. In a certain sense, pure ridge functions in a single
direction are ``as bad as it gets''; superpositions of many directions are no
harder.

Consider now an implication of the nonlinear approximation result,
Theorem 1.3. Its proof, while initially stated for approximation of pure
ridge functions, gives, upon applying the so-called p-triangle inequality as
described near (5.10) below, immediate insights for the case of more
general functions f.

Corollary 1.5. Suppose that f (x1 , x2) is a superposition of ridge
functions with profiles ri (t), i=1, 2, ... obeying the constraint

R#\:
i

&ri&
p
B4 s

p, p(R)+
1�p

<�, (1.17)

with s=1�p and p # (0, 1). By this we mean that for directions %i , i=1, 2, ...,
we can write

f = :
�

i=1

ri, %i ; (1.18)

the condition (1.17) on the ridge profiles guarantees the convergence of this
sum in supremum norm over any compact set. Consider the nonlinear
approximant fN defined by setting fN #f$ with f$ as in (1.10) and N=N� ($)
(see (1.9)). The error obeys

& f& fN&L�(D)�C } R } N &(s&1), N � �,

with a constant C that depends only on the disk D and on p.

Let RS(s, p, p, R) denote the class of all functions f obtainable by
superpositions obeying the constraints (1.17)�(1.18). Let s=1�p and
0< p<1. Now the optimal rate of N-term approximation over the subclass
RS(s, p, p, R) cannot be better than N&(s&1), since��as we saw following
(1.12)��that is the best rate of N-term approximation to the subclass of
pure ridge functions r(x1 cos(%)+x2 sin(%)) with profiles obeying &r&B4 s

p, p(R)

<R. But this corollary therefore shows that ( fN) achieves the same rate of
N-term approximation over the entire class RS(s, p, p, R) as over the sub-
class consisting of pure ridge functions with profiles &r&Bs

p, p(R)<R. Hence
N&(s&1) is the optimal approximation rate over the class RS(s, p, p, R)
and this rate is achieved by ( fN).
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In words, the result says that for a certain class of functions f built up
nicely out of arbitrarily steered ridge functions, essentially best N-term
nonlinear approximations come from thresholded ridgelet expansions.

1.10. Interpretations

So far, we have learned two things:

v There is an intimate relation between ridge functions and orthonor-
mal ridgelets. This is illustrated structurally, by the sparse representation
formulas (1.3)�(1.4), and the analysis formula (1.7); and also asymptoti-
cally, by the approximation rates exhibited in Theorems 1.2 and 1.3.

v Simple algorithms with orthonormal ridgelets might be used in
place of complex algorithms based on ridge functions, with equivalent
success.

Roughly speaking, while ridge functions are simple to describe, they are
hard to use in an effective manner; and while ortho-ridgelets are initially
more complicated to understand, they can easily be applied for approxima-
tion theory purposes in an effective manner. And the two systems have
equivalent approximation properties.

We now elaborate on the difficulties faced by ridge function approxima-
tion.

One stream of theoretical results on ridge function approximation is
purely existential, and supposes that, one is given directions for an N-term
ridge function approximation which are in fact the N optimal directions.
This a purely qualitative, abstract approach. To translate this into a practi-
cal situation, one hits a roadblock: the assumption of perfect simultaneous
global optimal choice of the several direction parameters. For large N this
assumption is computationally unrealistic. One doesn't know in general
how to numerically find joint minimizers (i.e. jointly optimal directions
%1 , ..., %N).

Another stream of theoretical results is more computationally realistic,
and says that we should proceed with sequential choice of directions and
apply greedy search methods in order to find the successive directions.
While this still requires extensive numerical search, it involves optimization
of a single direction at a time, and so is far more computationally realistic.
However, the theory then gives only very weak performance guarantees.
For example, a function could truly be a superposition of a finite number
of nice ridge functions, and yet the rate of convergence of a greedy N-term
approximation might be only 1�- N [1, 12].

In contrast, the ortho-ridgelet approach proposes a sequence of direct
and concrete steps. First, one calculates a fixed discrete set of integrals;
then one applies thresholding; finally the terms that survive are used to
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provide a partial reconstruction. There is no unrealistic demand for global
minimization and no difficult sampling questions. Moreover, as we show
here, the convergence rate one gets from simple thresholding is the same as
the rate one would get if the underlying optimal directions were known and
we were simply trying to build approximations to the underlying ridge
profiles. The content of Corollary 1.5 is that if the underlying ridge profiles
can existentially be approximated at a fast rate by finite wavelet sums, then the
function itself will be well approximated by simple ridgelet thresholding.

In summary, ridgelet-based thresholding is more applicable and concrete
than abstract ridge approximation, yet has performance comparable with
the optimal performance by abstract procedures. Moreover, in comparison
to greedy ridge approximation, ridgelet thresholding gives a far better con-
vergence rate than greedy ridge approximation in certain cases where the
optimal rate of ridge approximation is very fast; in such cases, the optimal
rate of ridgelet approximation by thresholding can be the same as the rate
abstract approximation, while the rate of greedy approximation is only
1�- N.

1.11. Application Contexts
As mentioned earlier, ridge function approximation has been proposed

in two contexts.
In the first, associated with tomography [13] and with projection pur-

suit regression [11], the object is modelled as a superposition of N ridge
functions, with complex nonparametric ridge profiles ri (t)��conceivably
quite general functions of t.

In the second, associated with Neural Networks [1, 12], the object is
modelled as a superposition of N ridge functions, each with a fixed simple
ridge shape _( } ) (such as a sigmoid), the different profiles differing only in
location and scale.

The results quoted above are relevant in both contexts.
On the one hand, we have shown e.g. in Corollary 1.5, that superposi-

tions of N ridge functions having complex nonparametric ridge profiles can
be well-approximated by ridgelet thresholding. So ridgelet thresholding is
an acceptable approach within the projection pursuit regression setup for
ridge approximation.

On the other hand, ridgelet thresholding is very similar to neural nets.
We are approximating by (near-) ridge functions (essentially) differing in
location, orientation, and scale, so the scheme is like neural network
approximation. In that setting, the Corollary 1.5 says that if f is an at-most
countable sum f (x)=��

n=1 :n_(an u$nx&bn) with �n |:n | p�R p, where the
prototype _( } ) is smooth and tends to zero rapidly at \�, then ridgelet
thresholding gives the N-term approximation error O(N&(1�p&1)). This is
an optimal result under the stated assumptions. For if we even knew the
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parameters an and un and the profile shape _( } ) we could not in general
have a better rate of N-term approximation than this; and yet ridgelet
thresholding works satisfactorily without using any knowledge of p, _( } ),
or the other parameters. We believe that some extension to the case where
_ does not vanish at \� is also possible.

1.12. Open Questions
Ultimately, one would like to know whether or not nonlinear threshold-

ing of the orthonormal ridgelet coefficients is quite generally as effective an
approximation method for arbitrary objects f as arbitrary superpositions of
sufficiently nice ridge functions. More precisely, supposing f is an object
that can be approximated at rate N&m by a sequence of N-term ridge
approximants fN=�N

i=1 ci, N\(ai, N u$%i, N x+b i, N), one would like to know
whether or not thresholding of orthonormal ridgelet expansions will give
N-term approximations at the rate N&m also.

Corollary 1.5 may be taken as evidence pointing in the direction of an
affirmative answer. It shows that for a particular class of objects
RS(s, p, p, R), the worst-case behavior of ridgelet thresholding over the
class is not worse than the worst-case behavior of ideal approximation by
sums of pure ridge functions. However, one would really like to know
whether the two approaches are equivalent on individual functions rather
than on functional classes. Although the tools developed in this paper seem
very useful to make further progress on such questions, further progress
would seem to require new insights as well.

As background, we mention that Cande� s [4] has shown that dual
ridgelets for L2(D) are almost as good for L2(D) approximation of
individual functions as classical ridge function dictionaries [\(au$% x+b):
(a, u% , b)] with ridge functions based on relatively arbitrary smooth activa-
tion functions \. Under the hypothesis that approximations to f are built
from superpositions of \-terms with bounded coefficients he has been able
to show that the rate of approximation by N-term dual ridgelet expansions
is at most logarithmically worse than the rate of approximation by ridge
functions with smooth activation units. Unfortunately, little of an explicit
nature is known about the elements of the approximating dual ridgelet
frames, beyond the fact that they are certainly not ridge functions. But the
result is very suggestive.

Finally, much of the interest in ridge function approximation has to do
with high dimensions [5], so extensions of these results beyond dimension
two would be of interest. The underlying tool used here��the ortho-ridgelet
basis��has been generalized to high dimensions, producing, however, not
an orthobasis, but instead a tight frame in all dimensions greater than 2
[10]. It seems a reasonable goal to seek generalizations of the results here
for dimensions >2.
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2. PRELIMINARIES

2.1. Orthonormal Ridgelets and Radon Transform
We begin by briefly quoting some material from [9]. For a smooth func-

tion f (x)= f (x1 , x2) of rapid decay, let Rf denote the Radon transform of
f, the integral along a line L(%, t) , expressed using the Dirac mass $ as

(Rf )(t, %)=| f (x) $(x1 cos %+x2 sin %&t) dx, (2.1)

where we permit % # [0, 2?) and t # R. Note that Rf has the antipodal
symmetry

(Rf )(&t, %+?)=(Rf )(t, %). (2.2)

We adopt the convention that F (and G and variants) typically will denote
a function on R_[0, 2?) obeying the same antipodal symmetry:

F(&t, %+?)=F(t, %). (2.3)

To create a space of such objects, we let [ , ] denote the pairing

[F, G]=
1

4? |
2?

0
|

�

&�
F(t, %) G� (t, %) dt d%, (2.4)

and by L2(dt d%) norm we mean &F&2=[F, F]. Let R be the closed
subspace of L2(dt d%) of functions F obeying (2.3). Let PRF be the ortho-
projector from L2(dt d%) onto R, defined by

(PR F)(t, %)=(F(t, %)+F(&t, %+?))�2. (2.5)

Define the operator of reflection of functions of one variable (Tf )(t)=
f (&t) and the operator of translation by half a period by (Sg)(%)=
g(%+?). Note that the space R consists of objects invariant under T�S;
(2.3) can be rewritten (T�S) F=F. In fact, PR =(I+T�S)�2. Set now,
for j, k # Z, and i�i0 , l=0, ..., 2i&1&1, = # [0, 1]

W*(t, %)=PR (�j, k�w=
i, l), (2.6)

where *=( j, k; i, l, =). For later reference, we spell this out:

W*(t, %)=(�j, k(t) w=
i, l(%)+�j, k(&t) w=

i, l(%+?))�2. (2.7)

It was shown in [9] that the W* provide an orthobasis for R. In order to
obtain orthonormality with respect to the scalar product [ , ], a particular
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normalization was imposed. In that normalization, &�j, k&L2(R)=- 2, and
&w=

i, l&=2 - ?. In a sense, the (W* : * # 4) constitute a ``tensor wavelet
basis which has been antipodally symmetrized''.

We define the adjoint of the Radon transform so that for all sufficiently
nice G # R and all sufficiently nice f # L2(dx),

[Rf, G]=( f, R+G) , (2.8)

which leads to

(R+G)(x)=
1

4? |
2?

0
G(x1 cos %+x2 sin %, %) d%. (2.9)

Define the Riesz order-1�2 fractional differentiation operator 2+ and also
the order-1�2 fractional integration operator 2& by the unified formula

(2\f )(t)=
1

2? |
�

&�
e it|f� (|) ||| \1�2 d|. (2.10)

These unbounded operators are well-defined on functions which are suf-
ficiently smooth [formally, the domain D(2+)=[ f: ��

&� | \̂(|)|2 ||| d|
<�]] or sufficiently oscillatory [formally, the domain D(2&)=[ f:
��

&� | f� (|)| 2 ||| &1 d|<�]]; in particular, they are well-defined on every
1-D Meyer wavelet �j, k , owing to supp(�� j, k)/[|: ||| # [ 2

3?2 j, 8
3 ?2 j]].

Moreover, on the appropriate domains, they are self-adjoint; and on the
appropriate domains they act as inverses of each other.

Set now, for * # 4,

{*=(2+�I ) W* , * # 4. (2.11)

For example,

{( j, k; i, l, 1)=(2+�j, k�w1
i, l+2+T�j, k �Sw1

i, l)�2.

A useful remark is that 2\T=T2\ on the appropriate domains. Of
course, in terms of the functions �+

j, k of the introduction, we have �+
j, k=

2+�j, k .
The key formula we need for this paper is

\*=R+[(2+ �I ) W*]=R+[{*]. (2.12)

The operator R+ is typically called back-projection in the tomography
literature. This formula says that an orthonormal ridgelet is the back-
projection of a fractionally-differentiated wavelet which has been anti-
podally-symmetrized.
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2.2. Special Ridge Functions

We now consider the relationship (1.3)�(1.4) between special ridge func-
tions r# and ridgelets \#. Formally, this is a simple matter, based
immediately on (2.12) and the definition of the W* . With $%0

denoting the
Dirac mass at %0 # [0, 2?),

r#(x)=�+
j, k(x1 cos %0+x2 sin %0)

=4? } R+[(�+
j, k�$%0

+�+
j, 1&k �$%0+?)�2]

=4? } R+[(2+�I )(�j, k �$%0
+� j, 1&k �$%0+?)�2]. (2.13)

In a moment we will argue that

4? } (�j, k�$%0+� j, 1&k�$%0+?)�2=: a#
*W* . (2.14)

Combining (2.13) and (2.14), we have

r#=R+ _(2+ �I ) : a#
*W*&

=R+ _: a#
*(2+�I ) W* &

=: a#
*R+[(2+�I ) W*]

=: a#
*\* ,

completing the formal argument for (1.4).
The argument for (2.14) is as follows. Let w~ =

i, l denote the basis element
w=

i, l rescaled to unit L2[0, 2?] norm. In the sense of distributions, we have
the identity

$%0
= :

2i0&1

l=0

($%0
, w~ 0

i0 , l) w~ 0
i0 , l+ :

�

i=i0

:
2i&1

l=0

($%0
, w~ 1

i, l) w~ 1
i, l ;

note here the expanded range of summation in l, the range being 0�l<2i

rather than 0�l<2i&1 as in the definition of the set 4 from Section 1. In
terms of the basis w=

il without rescaling,

4? } $%0
= :

2i0&1

l=0

($%0
, w0

i0 , l) w0
i0 , l+ :

�

i=i0

:
2i&1

l=0

($%0
, w1

i, l) w1
i, l . (2.15)
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Hence, again in the sense of distributions,

4? } (�j, k�$%0
+�j, 1&k�$%0+?)�2

= 1
2 :

2i0&1

l=0

($%0
, w0

i0 , l) �j, k�w0
i0 , l+ 1

2 :
�

i=i0

:
2i&1

l=0

($%0
, w1

i, l) �j, k �w1
i, l

+ 1
2 :

2i0&1

l=0

($%0+? , w0
i0 , l) �j, 1&k�w0

i0 , l

+ 1
2 :

�

i=i0

:
2i&1

l=0

($%0+? , w1
i, l) �j, 1&k �w1

i, l .

Rearranging the first term of the sum gives a sum over half as many terms:

�j, k� :
2i0&1&1

l=0

(($%0
, w0

i0 , l) w0
i0 , l+($%0

, w0
i0 , l+2i0&1) w0

i0 , l+2i0&1)�2.

Rearranging the third term of that same sum gives, similarly,

�j, 1&k � :
2i0&1&1

l=0

(($%0+? , w0
i0 , l) w0

i0 , l+($%0+? , w0
i0 , l+2i0&1) w0

i0 , l+2i0&1)�2.

We now notice that ($%0+? , w0
l+2i0&1) =($%0

, w0
i0 , l), so summing the last

two displays and rearranging subexpressions, we obtain

:
2i0&1&1

l=0

($%0
, w0

i0 , l)(�j, k�w0
i0 , l+�j, 1&k�w0

i0 , l+2i0&1)�2

+ :
2i0&1&1

l=0

($%0+? , w0
i0 , l)(� j, 1&k�w0

i0 , l+�j, k �w0
i0 , l+2i0&1)�2.

Now from �j, k(&t)=�j, 1&k(t) and ($%0+? , w0
i0 , l) =w0

i0 , l(%0+?), we can
rearrange this to

:
2i0&1&1

l=0

w0
i0 , l(%0) } W( j, k; i0 , l, 0)+ :

2i0&1&1

l=0

w0
i0 , l(%0+?) } W( j, 1&k; i0 , l, 0) .

Obviously, similar relationships hold for sums involving terms w1
i, l at

indices i>i0 , and so

4? } (�j, k�$%0
+� j, 1&k�$%0+?)�2

= :
2i0&1&1

l=0

w0
i0 , l(%0) W( j, k; i0 , l, 0)+w0

i0 , l(%0+?) W( j, 1&k; i0 , l, 0)

+ :
�

i=i0

:
2i&1&1

l=0

w1
i, l(%0) W( j, k; i, l, 1)+w1

i, l(%0+?) W( j, 1&k; i, l, 1) .

159RIDGE FUNCTIONS



Comparing with the definition of W* , this gives (2.14), and completes the
formal motivation of (1.7).

To attach a rigorous meaning to (1.4), we work with a weighted
L�-norm & f &�, &2_=supx # R2 | f (x)| (1+|x|2)&_, _ # [3, 4, 5, ...]; this down-
weights x's far from 0. We write L�

&2_ for the vector space of f with finite
& f &�, &2_ . Let 4i1 denote the collection [*: j, i<i1] of indices * that are
index-limited to i, j coarser than i1 . Consider the index-limited partial sum
approximation r(i1)=�4i1 a#

*\* .

Lemma 2.1. Let _ # [3, 4, 5, ...]. The identity

r#=:
*

a#
*\*

makes sense in L�
&2_ : the approximation r(i1&1) is norm-convergent to the

left-hand side in L�
&2_ as i1 � �.

Proof. For i2>i1 , put

Ei1, i2
=&r(i1)&r(i2)&L�

&2_
.

Then, for �4i1, i2
=4c

i2 "4c
i1 , (i2>i1),

Ei1, i2 ="\ :
* # �4i1 , i2

a#
* \*( } )+ (1+| } | 2)&_"L�

� :
* # �4i1, i2

|a#
* | &\*( } ) } (1+| } |2)&_&L�

� :
* # 4c

i1

|a#
* | &\*( } ) } (1+| } |2)&_&L� .

Now pick m>1. By rapid decay of w=
i, l(%), there is Cm so that if *=

( j0 , k0 ; i, l, =) or ( j0 , 1&k0 ; i, l, =), for some i, l, then

|a#
* |�Cm2i�2((1+2i |%0&%i, l | )&m+(1+2 i |%0+?&% i, l | )&m).

Now as i2>i1�i0 , =(*)=1 at all terms occuring in E i1 , i2 . We can apply
(2.16) of the Lemma following, with 0<d�2(_&2), and we can use the
observation that |a#

* |=0 unless j= j0 , getting

Ei1, i2 �C( j0) :
i�i1

2&i(d+1�2) 2i�2

_:
l

[(1+2i |%0&%i, l | )&m+(1+2i |%0+?&%i, l | )&m]

=C$( j0) :
i�i1

2&id�C"( j0) 2&i1d.
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As Ei1, i2�C"( j0) 2&i1 d we conclude that (r(i1)) i1
is a Cauchy sequence in

L�
&2_ norm.
We now show that the limit of this sequence is r#. The key observation

is

:
2i0&1

l=0

(w~ 0
i0 , l , $%0

) w~ 0
i0 , l+ :

i1&1

i=i0

:
2i&1

l=i0

(w~ 1
i, l , $%0

) w~ 1
i, l= :

2i1&1

l=0

(w~ 0
i1 , l , $%0

) w~ 0
i1 , l

which is merely the usual ``rewriting rule'' in the theory of multiresolution
analysis, the rule for converting from a monoscale representation by scaling
coefficients at fine level i1 , to a multiscale representation by scaling coef-
ficients at coarse level i0<i1 and wavelet coefficients at levels i0�i<i1 .
Note that this relationship is habitually stated in terms of the orthonormal
functions w~ =

i, l , but would remain equally valid in terms of w=
i, l . Let

P� i1$%0
=�2i1&1

l=0 (w~ 0
i1 , l , $%0

) w~ 0
i1 , l , and Pi1 $%0

=�2i1&1
l=0 (w0

i1 , l , $%0
) w0

i1 , l . Then
P=4? } P� . It follows immediately from the rewriting rule for P and the
definition of a#

* that

:
* # 4i1

a#
*{* =(�+

j0 , k0
�Pi1 $%0

+�+
j0 , 1&k0

�Pi1$%0+?)�2

=4? } (�+
j0 , k0

�P� i1 $%0
+�+

j0 , 1&k0
�P� i1 $%0+?)�2.

Now for the finite sum r(i1), we have

r(i1)= :
* # 4i1

a#
*\*=R+ _ :

* # 4i1

a#
*{* &

=R+[(�+
j0 , k0

�Pi1 $%0
+�+

j0 , 1&k0
�Pi1 $%0+?)�2]

=4? } R+[(�+
j0 , k0

�P� i1 $%0
+�+

j0 , 1&k0
�P� i1 $%0+?)�2].

Put rj, k, % (x)#�+
j, k(x1 cos(%)+x2 sin(%)); fix x and view % as the variable.

From the definition (2.9) of R+,

r(i1)(x)=4? }
1

4? |
2?

0
(rj0 , k0 , % (x) P� i1 $%0

(%)+r j0 , 1&k0 , % (x) P� i1 $%0+?)�2 d%.

We note that whenever g(%) is a continuous function on [0 , 2?),

|
2?

0
(P� i1 $%0

)(%) g(%) d% � g(%0) as i1 � �.
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For fixed x, rj, k, % (x) is uniformly continuous in %. Hence as i1 � �,

r(i1)(x) � (rj0 , k0 , %0
(x)+rj0 , 1&k0 , %0+?(x))�2=r j0 , k0 , %0

(x)=r#(x).

This pointwise convergence proves that r(i1) � r# in L�
&2_ norm. K

Lemma 2.2. For _�3 and d=1, ..., 2(_&2), for ==1,

&\*( } )(1+| } | 2)&_&L��C( j) 2&i(d+1�2), i�max(i0 , j(*)). (2.16)

Proof. Let K(x)=(1+|x|2)&_; then K # L1 provided _>1, and xl
i K

# L1 provided _>1+l�2. It follows that K� (!) # C 2(_&2) and that K� #
C�(R2"[0]). In fact K� (!), along with its derivatives, is of rapid decay as
|!| � �.

Employing this terminology, (2.16) can be estimated by

&\* } K&L��&\̂* V K� &L1 . (2.17)

Now as \̂* is supported in an annulus 1j , we have

( \̂* V K� )(!)=||
1j

\̂*(!$) K� (!&!$) d!$;

making a polar coordinate transformation ! W (r, %), 1j transforms into a
rectangle [Rj , Rj+1]_[0, 2?], and this becomes

|
Rj

Rj
|

2?

0
(�� j, k(r) w=

i, l(%)+�� j, 1&k(r) w =
i, l+2i&1(%))�2

_K� (!&(r cos %, r sin %)) d% r1�2 dr.

For d # [1, 2, ..., 2(_&2)] set

K� (d )(r, %; !)=\ �
�%+

d

K� (!&(r cos %, r sin %)),

and note that, with K� b, c#( �
�!1

)b ( �
�!2

)c K� (!),

K� (d )(r, %; !)= :
d

b=0

:
d

c=0

K� b, c(!&(r cos %, r sin %)) } Pb, c(r cos %, r sin %),

where each Pb, c(x1 , x2) is a polynomial of degree �d. Now

"\ �
�!1+

b

\ �
�!2 +

c

K� (!)"L1
�Cd 0�c�b�d<2(_&2).
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Hence, with C( j)=sup0�b, c�d supx # 1j |Pb, c(x1 , x2)|,

&K� (d )( } , } ; !)&L1(dr d%)�Cd } C( j).

Now for each fixed r>0, if ==1, w=
i, l has d-fold primitive, and

| w=
i, l(%) K� (!&(r cos %, r sin %)) d%

=(&1)d | (w=
i, l) (&d ) (%) K� (d )(r, %; !) d%.

Hence

( \̂* V K� )(!)=|
Rj+1

Rj

�� j, k(r) \|
2?

0
(w=

i, l) (&d) (%) K� (d)(r, % !) d%+ r1�2 dr

+|
Rj+1

Rj

�� j, 1&k(r) \|
2?

0
(w=

i, l)(&d ) (%+?) K� (d)(r, %; !) d%+ r1�2 dr,

and, by Minkowski,

&\̂* V K� &L1 �sup
! # 1j

&K� (d )( } , } ; !)&L2(dr d%)

_\|
Rj+1

Rj
|

2?

0
|�� j, k(r)| r1�2 |(w=

i, l) (&d ) (%)| d% dr

+|
Rj+1

Rj
|

2?

0
|�� j, 1&k(r)| r1�2 |(w=

i, l) (&d) (%+?)| d% dr+<2

=Cd } |
2?

0
|(w =

i, l) (&d ) (%)| d%

=Cd } 2&i(d+1�2). K

3. ANALYSIS OF RIDGE FUNCTIONS

We now turn to Theorem 1.1 of the Introduction, giving a very simple
formula for ridgelet coefficients of a ridge function��at least for ridge
functions r% with profile r # B1

1, 1(R).
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3.1. Preliminaries

Lemma 3.1. Let r(t) belong to the Bump algebra��Besov space B4 1
1, 1(R)

��and vanish at \�. Then r is bounded, and there exists an enumeration
( jn , kn) of the indices ( j, k) so that the sequence of finite sums

r(N)= :
N

n=1

cjn , kn �+
jn , kn

converges in L�(R) norm to r.

This will be proven in the Appendix. The proof rests on the following
lemma, also established in the Appendix.

Lemma 3.2. Let r(t) # B4 s
1, 1(R), s�1, and vanish at \�. There exist

coefficients (cj, k : j, k # Z) so that

r=: cj, k �+
j, k ,

where the right side converges in norm to r(t) in L�(R); the coefficients obey

: |cj, k | 2 js<C } &r&B4 s
1, 1(R) . (3.1)

3.2. Proof of Theorem 1.1.

Let #=( j0 , k0 , %0) and a#
* as in (1.3). Let r(i1)=�4i1 a#

* \* . Now for fixed
m>1, r(i1) is L�

&2_ -norm convergent to r as i1 � �. On the other hand,
each \* # L1

2_ , where L1
2_ is the space of functions on R2 normed by

& f &L1
2_

=� | f (x)| (1+|x| 2)_ dx. As L1
2_ /(L�

&2_)*, it follows that each
(\* , } ) defines a bounded linear functional on L�

&2_ . Hence

lim
i1 � �

(r(i1), \*) =(r#, \*) \* # 4.

Now each r(i1) is a finite sum of \* , so from orthogonality (\* , \*$) =$**$

we get

(r(i1), \*) ={0
a#

*

* � 4i1

* # 4i1.

It follows that

(r#, \*) =a#
* \* # 4. (3.2)
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By the orthogonality (�+
j, k , �&

j $, k$)=2 } $jj $$kk$ , this can be written as

(r#, \*) =((�+
j0 , k0

, �&
j, k) } w=

i, l(%0)+(�+
j0 , k0

, �&
j, 1&k) } w=

i, l(%0+?))�2 (3.3)

which proves (1.7) in the special case where r% is a special ridge function,
i.e. for ridge profile r=�+

j0 , k0
. We easily get the full result (1.7) from this

special case. Let r be as in the statement of the Theorem, and let ( jn , kn)n

be the corresponding enumeration of Lemma 3.1. Define the composite
ridge profile rN=�N

n=1 cn�jn , kn and corresponding ridge function rN, %0
=

�N
n=1 cnr#n, with #n=( jn , kn , %0), and note that (1.7) follows immediately

for all such finite composites, simply from superposing (3.3):

(rN, %0 , \*)=� :
N

n=1

cnr#n, \*�
= :

N

n=1

cn } (r#n, \*)

= :
N

n=1

cn } ((�+
jn , kn

, �&
j, k) } w=

i, l(%0)

+(�+
jn , kn

, �&
j, 1&k) } w=

i, l(%0+?))�2

=\� :
N

n=1

cn�+
jn , kn

, �&
j, k� } w=

i, l(%0)

+� :
N

n=1

cn �+
jn , kn

, �&
j, 1&k� } w=

i, l(%0+?)+<2

=((rN , �&
j, k) } w=

i, l(%0)+(rN , �&
j, 1&k) } w=

i, l(%0+?))�2.

But

rN, %0
� r%0

in L�(R2) and rN � r in L�(R) as N � �.

As each \* # L1(R2)/(L�(R2))*, and as �&
j, k # L1(R)/(L�(R))*,

(rN, %0
, \*) � (r%0

, \*) \* # 4,

(rN , �&
j, k) � (r, �&

j, k) \j, k # Z, as N � �.

So (1.7) follows as claimed.

4. SYNTHESIS OF RIDGE FUNCTIONS

In this section we prove Theorem 1.2.
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4.1. Preliminaries
We now consider the formal association

r%0
:
4

(r%0
, \*) \*

and develop a rigorous meaning for this expression. The coefficients
(r%0

, \*) may in certain cases grow with increasing i=i(*), so it is not
immediately apparent that this can be done.

We localize attention to the unit disc D=[x # R2: |x|�1], and consider
the approximation operator

Ai1f = :
* # 4i1

( f, \*) \*

which can be shown to make sense for nice ridge functions f =r%0 .

Lemma 4.1. Let r # B4 1
1, 1 , and r vanish at \�. Then for each i1�i0 the

sum �4i1 (r% , \*)\* is absolutely convergent for the L�(D) norm.

Proof. Decompose 4i1 into layers Li=4i"4i&1; for i1>i0 put

4i1=4i0 _ Li0+1 _ } } } _ Li1.

Let Bi be defined formally by

Bif =:
Li1

( f, \*) \* .

Then formally

Ai1=Ai0+Bi0+1+ } } } +Bi1.

Consider first the special ridge function r##�+
j0 , k0

(x1 cos %0+x2 sin %0),
with #=( j0 , k0 , %0). For m=1, 2, ....

|(r#, #*) |�Cm } $j0 j } ($k0 k+$k0 , 1&k) } 2i�2

_[(1+2i |%0&%i, l | )&m+(1+2i |%0+?&%i, l | )&m]

and as Lemma 4.2 below gives &\*&L�(D)�Cd } 2 j�22&(i& j) d,

:
Li1

|(r#, \#) | &\*&L�(D)�2 j0 } 2&(i& j0)(d&1�2) } C. (4.1)

Hence Bi (r#) is norm-convergent for each #, and likewise the finite sum
(Bi0+1+ } } } +Bi0)(r#).
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Now for an arbitrary r # B4 1
1, 1 , we work by decomposition into special

ridge functions. Lemma 3.1 guarantees a decomposition

r= :
�

n=1

cn�+
jn , kn

,

with � |cn | 2 jn�C, and so taking r (N)
% #�N

n=1 cn r#n with #n=( jn , kn , %0),
we have

&r%0
&r (N)

%0
&L� � 0 N � �.

Clearly each sum corresponding to Bi1(r (N)
%0

) is norm-convergent. Moreover,
by (4.1),

&Bi (r (N2)
%0

&r (N1)
%0

)&L� � :
N2

n=N1

&Bi (cnr%n)&L�

�C } :
N2

n=N1

2 jn |cn |. (4.2)

From r # B4 1
1, 1 and (3.1) we get

&Bi (r (N2)
%0

&r (N1)
%0

)&L��:
�

N1

2 jn |cn | C�C &r&B4 1
1, 1

. (4.3)

Hence (Bi (r(N)
% ))N is a norm-convergent sequence and the sum correspond-

ing to Bi (r%) is well-defined on B4 1
1, 1 .

It remains to show that Ai0 is well-defined. For given #=( j0 , k0 , %0)
there are actually only finitely many nonzero terms (r#, \*) , * # 4 i0; there
are on terms at j= j0 , k # [k0 , 1&k0] and 0�l<2i0&1. The bound
paralleling (4.1) follows for Ai0 exactly as for Bi. Inequalities similar to (4.2)
and (4.3) go through also. K

4.2. Proof of Theorem 1.2

Let r=� cj, k �+
j, k be the representation of the ridge profile r guaranteed

by Lemma 3.2. Let r(i1)=� j�i1 cj, k�+
j, k be an approximation to the ridge

profile generated using only terms �+
j, k at indices j�i1 . Note that the

indexlimiting approximation operator Ai1 behaves the same on the ridge
function r%0

as on the ridge function with the approximate profile r (i1)
%0

:

Ai1r (i1)
%0

=Ai1r%0
. (4.4)
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The triangle inequality gives

&r%0
&Ai1r%0

&L�(D)�&r%0
&r (i1)

%0
&L�(D)+&r (i1)

%0
&Ai1r (i1)

%0
&L�(D) . (4.5)

Now as r # B4 s
1, 1 , (3.1) can be used, along with rapid decay of w=

i, l , (1.13)
and (4.8), giving

&r%0
&r (i1)

%0
&L�(D) � :

j>i1

:
k

|cj, k | &�+
j, k&L�[&d, d ]

�C :
j>i1

:
k

|cj, k | 2 j

�C :
j>i1

2&(s&1) j \:
k

|cj, k | 2 js+
�C } 2&(s&1) i1 :

j>i1

:
k

|cj, k | 2 js

�C$ } 2&(s&1) i1 } &r&B4 s
1, 1(R) . (4.6)

Meanwhile

&r (i1)
%0

&Ai1r (i1)
%0

&L�(D)� :
i�i1

|(r (i1)
%0

, \*) | &(I&Ai1) \*&L�(D) . (4.7)

Now by Theorem 1.1,

|(r (i1)
%0

, \*) |�:
#

|c# | } |(r#, \*) | } 1[ j�i1]

� :
j0 , k0

|cj0 , k0
| ($ jj0 } ($kk0

+$k(1&k0))

_( |wi, l(%0)|+|wi, l(%0+?)| )) } 1[ j�i1]

=(|cj, k |+ |cj, 1&k | ) } ( |wi, l(%0)|+|wi, l(%0+?)| ) } 1[ j�i1] .

Also

(I&Ai1) \*={0
&\*

j(*)�i(*)�i1

j(*)�i1<i(*).

Lemma 4.2 below gives for d>0

&(I&Ai1) \*&*�(D)�{2 j�22&(i& j) d Cd

0
j(*)�i1<i(*)
j(*)�i(*)�i1 .
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Hence the right-hand side of (4.7) is upper-bounded by, for d>s,

C } :
j�i1

:
k

|cj, k | 2 j�2 :
i>i1

2i�2 2&(i& j) d

_\:
l

(1+2i |%0&%i, l | )&m+:
l

(1+2i |%0+?&%i, l | )&m+
�C :

j�i1

:
k

|c j, k | 2 j�2 2&(i1& j) d2 i1�2

�C :
j�i1

2&(i1& j) d2i1�22 j�22& js :
k

|cj, k | 2 js

=C2&i1(d&1�2) :
j�i1

2 j(d+1�2&s) :
k

|cj, k | 2 js

�C2&i1(d&1�2)2 i1(d+1�2&s) &r&B4 s
1, 1(R)

�C2&i1(s&1) &r&B4 s
1, 1(R) .

Combining this display with (4.6) and (4.5) gives the desired result (1.8).
K

Lemma 4.2. For d>0,

&\*&L�(D)�Cd } 2 j�22&(i& j) d, * # 4, ==1. (4.8)

Proof. From (1.2),

\*(x)=
1

4? | �+
j, k(x1 cos %+x2 sin %) w=

i, l(%) d%.

Define fx(%)=�+
j, k(x1 cos %+x2 sin %). Let t=t(%)=x1 cos %+x2 sin %,

\ �
�%+

d

fx(%)= :
d

l=0 \
�
�t+

l

�+
j, k(t)} t=t(%)

Pd, l(t(%), ..., t (m)(%)),

where Pd, l is a multivariate polynomial of degree �d. Now t=t(%) is a
smooth function of %, so |Pd, l(t(%), ..., t(d )(%))|�C \% # [0, 2?). Also, for
m=1, 2, ..., and l=1, 2, ...

}\ �
�t+

l

�+
j, k(t)} t=t(%)

�2 jl2 jCm, l(1+2 j |t(%)&tj, k | )&m.
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Hence

"\ �
�%+

d

fx"L2(d%)

�2 jd2 j�2C.

Also, for ==1, each w1
i, l has a d-fold primitive (w1

i, l) (&d ) obeying the
estimate

&(w1
i, l) (&d )&L2(d%)�C2&id,

so

|\*(x)|=c } | _\ �
�%+

d

fx&_\ �
�%+

&d

w1
i, l& d% }

�Cd2 j�22&(i& j) d, i> j, d=1, 2, ... .

5. NONLINEAR APPROXIMATION OF RIDGE FUNCTIONS

In this section we prove Theorem 1.3.

5.1. Preliminaries
A simple adaptation of the earlier Lemma 3.2 concerning B4 1

1, 1 will prove

Lemma 5.1. Let r # B4 s
p, p(R), where s=1�p and 0< p<1, and vanish at

\�. Then

r(t)=:
j, k

cj, k�+
j, k ,

where the sum is convergent in L�, and for C<�,

:
j, k

|cj, k | p 2 jp�C p. (5.1)

Indeed, the argument is the same as the argument for Lemma 3.2, only
substituting p-summability of the kernel A( j $, k$; j, k) for the 1-sum-
mability used in the proof of Lemma 3.2. That is, proceeding exactly as in
that proof until (6.4), one invokes at that point Lemma 6.2 and (6.5) and
then one obtains from this, and the p-triangle inequality, the desired
relation (5.1).

We need also a fact of the type well-known in interpolation theory��see
[2, 17].
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Lemma 5.2. Suppose (vi : i=1, 2, ...) is a sequence of nonincreasing
positive numbers with, for fixed 0< p<1, � v p

i �V p. Let SN=��
i=N vi .

Then for Cp>0,

SN�Cp } V } N1&1�p, N=1, 2, 3, ... . (5.2)

Proof. It follows from the assumption that v1� } } } �vi that i } v p
i �V p,

for i=1, 2, 3, ... . Hence Sn�V } ��
i=N i&1�p�Cp } V } N&(1�p&1). K

5.2. Proof of Theorem 1.3

Let as before r#(x)=�+
j0 , k0

(x1 cos %0+x2 sin %0) be a special ridge
function, with parameter #=( j0 , k0 , %0). By hypothesis,

r%0
= :

j0 , k0

c# r#, (5.3)

where, as r # B4 s
p, p(R) for s=1�p,

:
j0 , k0

|c# | p 2 j0p�C p (5.4)

for some C>0.
Define now the ridge-molecule x#=(x#

* : * # 4) by

x#
*=(r#, \*) } &\* &L�(D) , * # 4; (5.5)

(x#
*) is the sequence of ridgelet coefficients of the special ridge function r#,

normalized by their ``observable effects'' in the disk D. Lemma 5.3 below
shows that for 0< p<1,

&x#&lp�Cp } 2 j0, (5.6)

where Cp does not depend on #; this justifies the appellation ``molecular''.
Now the l p-quasi norm obeys the p-triangle inequality

&x+ y& p
lp�&x& p

lp+&y& p
lp (5.7)

for arbitrary sequences x, y. Define the array

x=((r%0
, \*) } &\*&L�(D) : * # 4);

this is the sequence of effect-normalized coefficients of the object r%0
. The

array x obeys, by (5.3)�(5.4), the molecular decomposition

x= :
j0 , k0

c#x#. (5.8)
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Combining this with (5.6) and (5.7),

&x& p
lp =" :

j0 , k0

c#x#"
p

lp

� :
j0 , k0

|c# | p &x#& p
lp

�C :
j0 , k0

|c# | p 2 j0p

�C$ } &r& p
B4 s

p, p(R) . (5.9)

Now consider

r~ ($)=:
*

'$((r%0
, \*) , &\* &L�(D)) \* .

We have, with 4c
$=[*: (r%0

, \*) | } &\*&L�(D)<$],

&r%0
&r~ ($)&L�(D) =":

4c
$

(r%0
, \*) \*"L�(D)

�:
4c

$

|(r%0
, \*) | } &\*&L�(D) . (5.10)

Let v1 , v2 , ... be an enumeration of the entries |(r%0
, \*) | } &\*&L�(D) in

nonincreasing order. There is an N=N($) so that the sum on the right of
(5.10) is of the form SN=��

i=N vi discussed in the lead-up to (5.2). There-
fore, with V=(� v p

i )1�p bounded by C } &r&B4 s
p, p(R) according to (5.9), we

have by (5.2)

&r%0
&r~ ($)&L�(D)�C } N 1&1�p=C } N &(s&1), N=N($), \$>0.

This completes the proof of Theorem 1.3.

5.3. Proof of Corollary 1.5

We now consider Corollary 1.5, which considered nonlinear approxima-
tions to a function f which is a superposition of ridge functions. Define the
array

x=(( f, \*) } &\* &L�(D) : * # 4);

this is the sequence of effect-normalized coefficients of the object f. By
assumption, f is a superposition of ridge functions f =�i ri, %i , and each
ridge function ri, %i obeys a decomposition exactly like (5.3)

r%i= :
j0 , k0

ci, #r#, (5.11)
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where in this sum, # runs through all triples ( j0 , k0 , %i) with %i fixed. It
follows that, with x# as in (5.5),

x= :
j0 , k0 , i

ci, #x#. (5.12)

Following exactly the logic of (5.8)�(5.9), we have

&x& p
lp�C } :

i

:
j0 , k0

|c i, # | p 2 j0p.

But now observe that the right-hand side is equivalent to C } �i &ri &
p
B4 s

p, p
#

C } R. From that point on, argue as in the completion of the proof of
Theorem 1.3, starting from (5.9) on.

5.4. Ridgelet Analysis of a Special Ridge Function

Lemma 5.3. For the special ridge function r#, the corresponding sequence
x# of ridgelet coefficients normalized by &\*&L�(D) obeys

&x#&lp�Cp } 2 j0, (5.13)

where Cp is independent of ( j0 , k0 , %0).

Proof. Now x#
*=a#

* } &\*&L�(D) , where a#
* is as in (1.3). The a#

* obey, by
rapid decay of w=

i, l , an estimate of the form

|a#
* |�Cm } 2i�2 } ((1+2i |%0&%i, l | )&m+(1+2i |%0+?&%i, l | )&m), \i, l

(5.14)

for each m>1. Moreover, by Lemma 4.2,

&\*&L�(D)�Cd } 2 j0�2 } 2&(i& j0) d, (5.15)

for each d>0. Set now, for fixed m,

u i
l(t)=(1+2i |t&%i, l | )&m,

and note that by (5.14), |a#
* |�Cm } 2i�2 } (u i

l(%0)+u i
l(%0+?)). Now for

mp>1, and t # [0, 2?),

&(u i
l(t))l&L p�Cm, p<�. (5.16)

The nonzero entries in the sequence x# correspond to indices * where
j(*)= j0 , k(*)=k0 , and h=i& j�0, l=0, ..., 2 j+h&1&1. Define, for each
h>0, the array vh structured as

vh=(vh
l : l=0, ..., 2 j0+h&1&1),
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and note that the nonzero entries in x# can be arranged in a concatenation
of several such arrays

v=(v0, v1, v2, ...),

where vh contains the nonzero entries x#
* such that i= j0+h; k=k0 ,

l=0, ..., 2 j0+h&1&1. Now combining (5.14) and (5.15), we have, with
Ah=Cd } 2 j0�2 } 2&hd,

&vh& p
lp �A p

h } (&u j0+h(%0)& p
lp+&u j0+h(%0+?)& p

lp) } 2( j0+h) p�2

�Cm, pA p
h 2( j0+h) p�2.

We also remark that if an array v is the concatenation of two subarrays,
v=(v0, v1), then

&v& p
lp=&v0& p

lp+&v1& p
lp . (5.17)

Using this and picking d>1�2, so that �h�0 (2&hd) p 2hp�2�C$d, p , we have

&(v0, v1, ...)& p
lp = :

h�0

&vh& p
lp

�C p
m, p :

h�0

A p
h } 2( j0+h) p�2

�C$2 j0p,

and so (5.13) follows. K

6. APPENDIX

Proof of Lemma 3.1. This follows from Lemma 3.2. Write

": cj, k�+
j, k"L�

�: |cj, k | &�+
j, k&L��C : |cj, k | 2 j<�. (6.1)

Let an be the n th largest among the entries |cj, k |&�+
j, k&L� and suppose it

occurs at index ( jn , kn). Set

rN # :
N

n=1

cjn , kn �+
jn , kn

;
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then we have

&r&rN&�� :
�

N+1

an .

By (6.1), r # B4 1
1, 1(R) implies ��

1 an<�, so ��
N+1 an � 0 as N � �.

Proof of Lemma 3.2. We have, from 2\2�=Id on Dom(2+) &

Dom(2&), from self-adjointness of 2\, and from �j, k # Dom(2+) &

Dom(2&),

(�+
j $, k$ , �&

j, k) =(2+� j $, k$ , 2&�j, k)

=(2&2+�j $, k$ , �j, k)

=(�j $, k$ , �j, k)=$ j $j } $k$k .

This gives the identity

f =:
j, k

( f, �&
j, k) �+

j, k

valid for any f =�N
n=1 cn�+

jn , kn
which is a finite sum of �+

j, k 's.
We claim that this identity is also valid for f =�j $, k$ , which is an infinite

sum:

�j $, k$= :
j $+1

j= j $&1

:
k

(�j $, k$ , �&
j, k) �+

j, k . (6.2)

To justify this we argue as follows. Let &(|) be a smooth window, equal
to 1 on ||| # [?�(3 } 128), 128?�3] and vanishing outside ?�(3 } 256) to
256?�3. Define 2+

j and 2&
j by

(2\
j f )(t)=| f� (|) e i|t ||| \1�2 &(2& j|) d|.

Then each 2\
j is a bounded convolution operator, and agrees perfectly

with 2\ on the three adjacent levels j $ # [ j&1, j, j+1]:

2\
j �j $, k$=2\�j $, k$ j $ # [ j&1, j, j+1], k # Z.

Also 2\
j 2 �

j =Id on span[�j $, k : j $= j&1, j, j+1, k # Z]. According to
Lemma 6.1 and translation invariance �j, k+1(t)=�j, k(t&2& j),

2&
j $ �j $, k$= :

j= j $+1

j= j $&1

:
k

(2&
j $ �j $, k$ , �j, k) �j, k .

175RIDGE FUNCTIONS



It follows from self-adjointness of 2&
j ,

(�&
j $, k$ , �j, k)=(2&

j $ �j $ , �j, k)

=(�j $, k$ , 2&
j $ �j, k)

=(�j $, k$ , �&
j, k) , j # [ j $&1, j $, j $+1].

So we may write

�&
j $, k$= :

j= j $+1

j= j $&1

:
k

(�j $, k$ , �&
j, k) �j, k .

Operating on both sides by 2+
j $ and justifying a term-by-term treatment

using Lemma 6.2,

2+
j $ �&

j $, k$= :
j $+1

j= j $&1

:
k

(� j $, k$ , �&
j, k) 2+

j $ �j, k

which, as 2+
j $ �&

j $, k$=�j $, k$ and 2+
j $ �j, k$=�+

j, k in the indicated range, this
justifies (6.2).

Define now

A( j $, k$; j, k)=(�j $, k$ , �&
j, k).

Note that �&
j, k(t)=�&

0, 0(2
jt&k); hence

A( j $, k$; j, k)=| �j $, k$(t) �&
j, k(t) dt

=2 j $�2 | �0, k$(2
j $t) �&

j& j $, k(2 j $t) 2 j $ dt

=2& j $�2(�0, k$ , �&
j& j $, k)

=2& j $�2A(0, k$; j& j $, k). (6.3)

Now (6.2) says that

�j $, k$=: A( j $, k$; j, k) �+
j, k ,

and we may use A to convert an expansion in wavelets �j, k into an expan-
sion in unnormalized vaguelettes �+

j, k . Applying this idea,
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r(t)= :
j $, k$

:$j $, k$�j $, k$

= :
j $, k$

: j $, k$ :
j, k

A( j $k$; j, k) �+
j, k

=:
j, k

�+
j, k :

j $, k$

A( j $k$; j, k) :j $, k$ .

Hence,

r(t)=� ajk�+
j, k ,

with, by (6.3),

aj, k = :
j $, k$

A( j $k$; j, k) : j $k$

= :
j+1

j $= j&1

:
k$

2& j $�2A(0, k$; j& j $, k) :j $k$ .

Lemma 6.2 gives

:
k$

|A(0, k$, h, k)|�C \k, \h=&1, 0, 1, (6.4)

and we have

:
k

|aj, k |�C :
j+1

j $= j&1

:
k$

|: j $k$ | 2& j $�2.

In short, for s�1,

:
j, k

2 js |a j, k |�C :
j $, k$

|:j $, k$ | 2 j (s&1�2). K

Lemma 6.1. Let T be an L2-bounded convolution operator. Let (�j, k) be
a system of Meyer wavelets.

T�0, 0= :
+1

j=&1

:
k

(T�0, 0 , �j, k) �j, k .

Proof. As T�0, 0 is in L2, it automatically has a representation T�0, 0=
�j �k (T�0, 0 , �j, k) �j, k with potentially infinitely many scales. However,

as T is a convolution operator we may also write T�@(|)={(|) �� (|) with
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{(|) an essentially bounded function, and so the support of T�@(|) is con-

tained in the support of �(|). Thus T�@0, 0(|) is supported in ||| #
[2�3?, 8�3?]. Hence it is orthogonal to every �j, k whose support in the fre-
quency domain does not intersect the interior of this set. In short it is
orthogonal to every �j, k with j<&1 or j>1. K

Lemma 6.2. For 0< p�1,

:
k$

|A(0, k$, h, k)| p�Cp \k, \h=&1, 0, 1, (6.5)

Proof. Writing � for �0, 0 and passing to the frequency domain,

A(0, k$, h, k)=
1

2? | �� (|) e&i|k$�� (|�2h)* e+i|k�2h
2&h�2 d|

=
1

2? | �� (|) �� (|�2h)* 2&h�2e&i|(k$&k�2h) d|

=9h(k�2h&k$), say,

where

9� h(|)#�� (|) �� (|�2h)* 2&h�2.

Now 9� h is C � and of compact support. Hence 9h is of rapid decay, and
so for each m>0 we have Cm with

|9h(t)|�Cm } (1+|t| )&m \t # R.

Now picking mp>1,

:
k$

|A(0, k$, h, k)| p=:
k$

|9h(k�2h&k$)| p

�C p
m :

k$

(1+|k�2h&k$| )&mp�Cm, p<�. K
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